Skip to main content

Advertisement

Log in

Nutricline shoaling in the eastern Pacific warm pool during the last two glacial maxima

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) and alkenones were analyzed in sediment samples retrieved from Ocean Drilling Program Site 1241 covering the last 150000 years to understand the hydrological evolution of the eastern Pacific warm pool (EPWP). GDGT and alkenone concentrations showed higher values in marine isotope stage (MIS)-2 and MIS-6, which suggests the enhancement of primary production at glacial maxima. \( {\text{TEX}}_{86}^{\text{H}} \)- and \( U_{ 3 7^\prime }^{\text{K}} \)-derived temperature depicted different temperature evolutions. \( U_{ 3 7^\prime }^{\text{K}} \)-derived temperature was marked by small variation during the glacial–interglacial cycles, whereas \( {\text{TEX}}_{86}^{\text{H}} \)-derived temperature showed pronounced glacial–interglacial variation that was similar to Mg/Ca-derived temperature records from nearby cores in the EPWP. Given that enhanced primary production during glacial maxima suggests nutricline shoaling, unchanged \( U_{ 3 7^\prime }^{\text{K}} \) over glacial–interglacial cycles can be interpreted as the shift of alkenone production depth. \( {\text{TEX}}_{86}^{\text{H}} \) seems not to be influenced by glacial–interglacial changes in nutricline depths, recording an integrated temperature in surface and thermocline water. The shallow nutricline in the EPWP during glacial maxima most likely reflected the intense formation of Antarctic intermediate water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bentaleb I, Fontugne M, Beaufort L (2002) Long-chain alkenones and \( U_{ 3 7^\prime }^{\text{K}} \) variability along a south-north transect in the western Pacific Ocean. Global Planet Change 34:173–183

    Google Scholar 

  • Benway HM, Mix AC (2004) Oxygen isotopes, upper-ocean salinity, and precipitation sources in the eastern tropical Pacific. Earth Planet Sci Lett 224(3–4):493–507

    Article  Google Scholar 

  • Benway HM, Mix AC, Haley BA, Klinkhammer GP (2006) Eastern Pacific warm pool paleosalinity and climate variability: 0–30 kyr. Paleoceanography 21:PA3008

    Article  Google Scholar 

  • Bishop JKB, Stephen JC, Wiebe PH (1986) Particulate matter distributions, chemistry and flux in the Panama Basin: response to environmental forcing. Prog Oceanogr 17:1–59

    Article  Google Scholar 

  • Brink KH, Halpern D, Huyer A, Smith RL (1983) The physical environment of the Peruvian upwelling system. Prog Oceanogr 12:285–305

    Article  Google Scholar 

  • Chavez FP, Barber RT (1987) An estimate of new production in the equatorial Pacific. Deep Sea Res 34:1229–1243

    Article  Google Scholar 

  • Chavez FP, Messie M, Pennington JT (2011) Marine primary production in relation to climate variability and change. Annu Rev Mar Sci 3:227–260

    Article  Google Scholar 

  • Conte MH, Sicre M-A, Rühlemann C, Weber JC, Schulte S, Schulz-Bull D, Blanz T (2006) Global temperature calibration of the alkenone unsaturation index (\( U_{ 3 7^\prime }^{\text{K}} \)) in surface waters and comparison with surface sediments. Geochem Geophys Geosyst 7:Q02005

    Google Scholar 

  • Cortés MY, Bollmann J, Thierstein HR (2001) Coccolithophore ecology at the HOT station ALOHA, Hawaii. Deep Sea Res II 48:1957–1981

    Article  Google Scholar 

  • Drijfhout SS, Donners J, de Ruijter WPM (2005) The origin of Intermediate and Subpolar Mode Waters crossing the Atlantic equator in OCCAM. Geophys Res Lett 32(6):L06602

    Article  Google Scholar 

  • Dubois N, Kienast M, Normandeau C, Herbert TD (2009) Eastern equatorial Pacific cold tongue during the last glacial maximum as seen from alkenone paleothermometry. Paleoceanography 24:PA4207

    Article  Google Scholar 

  • Fiedler PC, Talley LD (2006) Hydrography of the eastern tropical Pacific: a review. Prog Oceanogr 69(2–4):143–180

    Article  Google Scholar 

  • Forsbergh BD (1969) On the climatology, oceanography and fisheries of the Panama Bight. Bull Inter Am Trop Tuna Comm 14:49–259

    Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688

    Article  Google Scholar 

  • Groeneveld J, Steph S, Tiedemann R, Garbe-Schönberg D, Nürnberg D, Sturm A (2006) Pliocene development of east-Pacific hydrology as revealed by Mg/Ca analyses on the planktic foraminifer Globigerinoides sacculifer. Proc ODP Sci Results 202:1–27

    Google Scholar 

  • Hagino K, Okada H, Matsuoka H (2000) Spatial dynamics of coccolithophore assemblage in the Equatorial Western-Central Pacific Ocean. Mar Micropaleontol 39:53–57

    Article  Google Scholar 

  • Ho SL, Yamamoto M, Mollenhauer G, Minagawa M (2011) Core top TEX86 values in the south and equatorial Pacific. Org Geochem 42:94–99

    Article  Google Scholar 

  • Honjo S (1982) Seasonality and interaction of biogenic and lithogenic particulate flux at Panama Basin. Science 218:883–884

    Article  Google Scholar 

  • Hopmans EC, Schouten S, Pancost R, van der Meer MTJ, Sinninghe Damsté JS (2000) Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 14:585–589

    Article  Google Scholar 

  • Hopmans EC, Weijers JWH, Schefuß E, Herfort L, Sinninghe Damsté JS, Schouten S (2004) A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett 224:107–116

    Article  Google Scholar 

  • Horikawa K (2006) Response of nitrogen cycling to climate-related oceanographic changes during the last glacial–interglacial cycle: a contrastive study between the eastern and western equatorial Pacific. Dissertation, Hokkaido University

  • Horikawa K, Minagawa M, Murayama M, Kato Y, Asahi H (2006) Spatial and temporal sea-surface temperatures in the eastern equatorial Pacific over the past 150 kyr. Geophys Res Lett 33:L13605

    Article  Google Scholar 

  • Huguet C, Hopmans EC, Febo-Ayala W, Thompson DH, Sinninghe Damsté JS, Schouten S (2006) An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem 37:1036–1041

  • Kamikuri S, Motoyama I, Nishi H, Iwai M (2009a) Neogene radiolarian biostratigraphy and faunal evolution of ODP Sites 845 and 1241, eastern equatorial Pacific. Acta Palaeontol Pol 54(4):713–742

    Article  Google Scholar 

  • Kamikuri S, Motoyama I, Nishi H, Iwai M (2009b) Evolution of eastern Pacific warm pool and upwelling processes since the middle Miocene based on analysis of radiolarian assemblages: response to Indonesian and central American seaways. Palaeogeogr Palaeoclimatol Palaeoecol 280(3–4):469–479

    Article  Google Scholar 

  • Kessler WS (2006) The circulation of the eastern tropical Pacific: a review. Prog Oceanogr 69:181–217

    Article  Google Scholar 

  • Kienast M, MacIntyre G, Dubois N, Higginson S, Normandeau C, Chazen CR (2012) Alkenone unsaturation in surface sediments from the eastern equatorial Pacific: implications for SST reconstructions. Paleoceanography 27:PA1210

    Article  Google Scholar 

  • Kim JH, van der Meer J, Schouten S, Helmke P, Willmott V, Sangiorgi F, Koc N, Hopmans EC, Sinninghe Damsté JS (2010) New indices and calibrations derived from the distribution of crenarchaeol isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim Cosmochim Acta 74:4639–4654

    Article  Google Scholar 

  • Koutavas A, Lynch-Stieglitz J (2003) Glacial–interglacial dynamics of the eastern equatorial Pacific cold tongue-ITCZ system reconstructed from oxygen isotope records. Paleoceanography 18:1089

    Article  Google Scholar 

  • Koutavas A, Lynch-Stieglitz J (2005) Variability of the marine ITCZ over the eastern Pacific during the past 30,000 years: regional perspective and global context. In: Bradley R, Diaz H (eds) The Hadley circulation: present past and future. Springer, Berlin, pp 347–369

    Google Scholar 

  • Koutavas A, Sachs JP (2008) Northern timing of deglaciation in the eastern equatorial Pacific from alkenone paleothermometry. Paleoceanography 23:PA4205

    Article  Google Scholar 

  • Lea DW, Pak DK, Spero HJ (2000) Climate impact of late quaternary equatorial Pacific sea surface temperature variations. Science 289:1719–1724

    Article  Google Scholar 

  • Leduc G, Schneider RR, Kim JH, Lohmann G (2010) Holocene and Eemian Sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry. Quat Sci Rev 29(7–8):989–1004

    Article  Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003

    Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) In: Levitus S (ed) World ocean atlas 2009, 1. Temperature, NOAA atlas NESDIS 68. US Government Printing Office, Washington, DC, pp 184

  • Loubere P (1999) A multiproxy reconstruction of biological productivity and oceanography in the eastern Pacific for the past 30,000 years. Mar Micropaleontol 37:173–198

    Article  Google Scholar 

  • Marra J, Wiebe PH, Bishop JKB, Stepien JC (1987) Primary production and grazing in the plankton of the Panama Bight. Bull Mar Sci 40:255–270

    Google Scholar 

  • Matsumoto K, Oba T, Lynch-Stieglitz J, Yamamoto H (2002) Interior hydrography and circulation of the glacial Pacific Ocean. Quat Sci Rev 21:1693–1704

    Article  Google Scholar 

  • McCartney MS (1977) Subantarctic mode water. In: Angel M (ed) A voyage of discovery. Pergamon, Oxford, pp 103–119

    Google Scholar 

  • McGee D, Marcantonio F, Lynch-Stieglitz J (2007) Deglacial changes in dust flux into the eastern equatorial Pacific. Earth Planet Sci Lett 257:215–230

    Article  Google Scholar 

  • Mix AC et al (2003) Chapter 12, Site 1241. Proc ODP Initial Rep 202:101

  • Muratli JM, Chase Z, Mix AC, McManus J (2010) Increased glacial-age ventilation of the Chilean margin of Antarctic intermediate water. Nat Geosci 3:23–26

    Article  Google Scholar 

  • Nameroff TJ, Calvert SE, Murray JW (2004) Glacial–interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals. Paleoceanography 19(1):PA1010

    Article  Google Scholar 

  • Oba T, Murayama M (2004) Sea surface temperature and salinity changes in the northwest Pacific since the last glacial maximum. J Quat Sci 19(4):335–346

    Article  Google Scholar 

  • Okada H, Honjo S (1973) The distribution of oceanic coccolithophorids in the Pacific. Deep Sea Res 20:355–374

    Google Scholar 

  • Pahnke K, Zahn R (2005) Southern hemisphere water mass conversion linked to North Atlantic climate variability. Science 307:1741–1746

    Article  Google Scholar 

  • Paillard D, Labeyrie L, Yiou P (1996) Macintosh program performs time-series analysis. Eos Transaction AGU 77:379

    Article  Google Scholar 

  • Peeters FJC, Brummer G-JA, Ganssen G (2002) The effect of upwelling on the distribution and stable isotope composition of Globigerina bulloides and Globigerinoides ruber (planktic foraminifera) in modern surface waters of the NW Arabian Sea. Glob Planet Change 34:269–291

    Article  Google Scholar 

  • Pennington JT, Mahoney KL, Kuwahara VS, Kolber DD, Calienes R, Chavez FP (2006) Primary production in the eastern tropical Pacific: a review. Prog Oceanogr 69(2–4):285–317

    Article  Google Scholar 

  • Pierrehumbert RT (2000) Climate change and the Tropical Pacific: the sleeping dragon wakes. Proc Nat Acad Sci 97:1355–1358

    Article  Google Scholar 

  • Pisias NG, Mix AC (1997) Spatial and temporal oceanographic variability of the eastern equatorial Pacific during the late Pleistocene: evidence from Radiolaria microfossils. Paleoceanography 12:381–393

    Article  Google Scholar 

  • Prahl FG, Muehlhausen LA, Zahnke DL (1988) Further evaluation of long chain alkenones as indicators of paleoceanographic conditions. Geochim Cosmochim Acta 52:2303–2310

    Article  Google Scholar 

  • Reid FMH (1980) Coccolithophorids of the North Pacific Central Gyre with notes on their vertical and seasonal distribution. Micropaleontology 26:151–176

    Article  Google Scholar 

  • Rincon-Martínez D, Lamy F, Contreras S, Leduc G, Bard E, Saukel C, Blaz T, Mackensen A, Tiedemann R (2010) More humid interglacials in Ecuador during the past 500 kyr linked to latitudinal shifts of the equatorial front and Intertropical Convergence Zone in the eastern equatorial Pacific. Paleoceanography 25:PA2210

    Article  Google Scholar 

  • Rühlemann C, Butzin M (2006) Alkenone temperature anomalies in the Brazil–Malvinas Confluence area caused by lateral advection of suspended particulate material. Geochem Geophys Geosys 7:Q10015

    Article  Google Scholar 

  • Sagawa T, Yokoyama Y, Ikehara M, Kuwae M (2012) Shoaling of the western equatorial Pacific thermocline during the last glacial maximum inferred from multispecies temperature reconstruction of planktonic foraminifera. Palaeogeogra Palaeoclimatol Palaeoecol 346–347:120–129

    Article  Google Scholar 

  • Schouten S, Hopmans EC, Schefuß E, Sinninghe Damsté JS (2002) Distributional variations in marine crenarchaeotal membrane lipids: a new organic proxy for reconstructing ancient sea water temperatures? Earth Planet Sci Lett 204:265–274

    Article  Google Scholar 

  • Schouten S, Hudget C, Hopmans EC, Kienhuis MVM, Sinninghe Damsté JS (2007) Analytical methodology for TEX86 paleothermometry by high performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Anal Chem 79:2940–2944

    Article  Google Scholar 

  • Seki O, Foster GL, Schmidt DN, Mackenden A, Kawamura K, Pancost RD (2010) Alkenone and boron-based Pliocene pCO2 records. Earth Planet Sci Lett 292:201–211

    Article  Google Scholar 

  • Seki O, Schmidt DN, Schouten S, Hopmans EC, Sinninghe Damsté JS, Pancost RD (2012) Paleoceanographic changes in the eastern equatorial Pacific over the last 10 Myr. Paleoceanography 27:PA3224

    Article  Google Scholar 

  • Steger JM, Collins CA, Chu PC (1998) Circulation in the Archipielago de Colon (Galápagos Islands). Deep Sea Res II 45:1093–1114

    Article  Google Scholar 

  • Steinmetz JC (1991) Calcareous nannoplankton biocoenosis: sediment trap studies in the Equatorial Atlantic, Central Pacific and Panama Basin. In: Honjo S (ed) Ocean biocoenosis series 1. Woods Hole Oceanography Institute, Woods Hole

    Google Scholar 

  • Steph S, Tiedemann R, Groeneveld J, Sturm A, Nürnberg D (2006) Pliocene changes in tropical east Pacific upper ocean stratification: Response to tropical gateways? Proc ODP Initial Rep 202:1–51

    Google Scholar 

  • Steph S, Tiedemann R, Prange M, Groeneveld J, Schulz M, Timmermann A, Nürnberg D, Rühlemann C, Saukel C, Haug GH (2010) Early Pliocene increase in thermohaline overturning: a precondition for the development of the modern equatorial Pacific cold tongue. Paleoceanography 25:PA2202

    Article  Google Scholar 

  • Taft BA (1963) Distribution of salinity and dissolved oxygen on surfaces of uniform potential specific volume in the south Atlantic, south Pacific and Indian oceans. J Mar Res 21:129–146

    Google Scholar 

  • Talley LD, Pickard GL, Emery WJ, Swift JH (2011) Descriptive physical oceanography, 6th edn. Elsevier, Boston, p 560

    Google Scholar 

  • Thunell RC, Reynolds LA (1984) Sedimentation of planktonic foraminifera: seasonal changes in species flux in the Panama Basin. Micropaleontology 30:243–262

    Article  Google Scholar 

  • Watanabe T, Winter A, Oba T (2001) Seasonal changes in sea surface temperature and salinity during the Little Ice Age in the Caribbean Sea deduced from Mg/Ca and 18O/16O ratio in corals. Mar Geol 173:21–35

    Article  Google Scholar 

  • Weijers JWH, Schouten S, Spaargaren OC, Sinninghe Damsté JS (2006) Occurrence and distribution of tetraether membrane in soils: implications for the use of the BIT index and the TEX86 SST proxy. Org Geochem 37:1680–1693

    Article  Google Scholar 

  • Wyrtki K (1967) Circulation and water masses in the eastern equatorial Pacific Ocean. Int J Oceanol Limnol 1:117–147

    Google Scholar 

  • Xie RC, Marcantonio F (2012) Deglacial dust provenance changes in the eastern equatorial Pacific and implications for ITCZ movement. Earth Planet Sci Lett 317–318:386–395

    Article  Google Scholar 

  • Yamamoto M, Shiraiwa Y, Inouye I (2000) Physiological responses of lipids in Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyceae) to growth status and their implications for alkenone paleothermometry. Org Geochem 31:799–811

    Article  Google Scholar 

  • Yamamoto M, Okino T, Sugisaki S, Sakamoto T (2008) Late Pleistocene changes in terrestrial biomarkers in sediments from the central Arctic Ocean. Org Geochem 39:754–763

    Article  Google Scholar 

Download references

Acknowledgments

The Ocean Drilling Program provided the samples used in this study. We thank Keiji Horikawa for providing us \( U_{ 3 7^\prime }^{\text{K}} \) data from core HY04. We also thank Tatsufumi Okino and Keiko Ohnishi for their analytical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasrizal Bin Shaari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaari, H.B., Yamamoto, M., Irino, T. et al. Nutricline shoaling in the eastern Pacific warm pool during the last two glacial maxima. J Oceanogr 70, 25–34 (2014). https://doi.org/10.1007/s10872-013-0209-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-013-0209-1

Keywords

Navigation